SYNTHESIS OF SUBSTITUTED PYRIDINES—I

4.6-DIHYDROXY-1,3-DISUBSTITUTED PYRIDINES

A. BUTT, S. M. A. HAI and I. A. AKHTAR
Drugs & Pharmaceutical Division, Central Laboratories, P.C.S.I.R.,
35, P.H.N. Lines, Karachi-Cantt: Pakistan

(Received 3 July 1965; in revised form 1 September 1965)

Abstract—The reaction of alkoxides i.e. sodium methoxide and sodium ethoxide with amino-pyranodioxins (I) is a general one and yields 1,3-disubstituted derivatives of 4,6-dihydroxy pyridine. Evidence for the structure of the products was provided by IR and UV spectroscopy. A mechanism for the reaction has been proposed.

7-Anilino-2,2-dimethyl-4,5-dioxopyrano(4,3-d)-(1,3)-dioxin¹ when treated with sodium ethoxide yielded ethyl 1,2-dihydro-4,6-dihydroxy-2-oxo-1-phenyl-pyridine-3-carboxylate.² Further examples of the preparation of dihydroxy-pyridines (II) by this route

are now described. The products have different ester groupings —C—OR at position 3 depending upon the alkoxide employed, and the substituent at position 1, is that of the amino grouping of the parent pyrano-dioxin (I). For example, 7-anilino-2,2-dimethyl-4,5-dioxopyrano-(4,3-d)-(1,3)-dioxin (I; R' = Ph), when treated with sodium methoxide, formed a methyl ester pyridone (II, R' = Ph, R = Me) m.p. 210° (dec), λ_{max} 305 m μ , log ε , 4·50 which was identical in all respects with the compound prepared earlier by another method.² Similar treatment of other amino-pyrano-dioxins with sodium methoxide and sodium ethoxide in absolute methanol and ethanol respectively gave the corresponding pyridine-carboxylates, (II) as listed in Table 1. These products formed morpholinium salts (III)* which could easily be converted back into the original hydroxypyridines by dissolution in dilute acids, for example, hydrochloric acid. These pyridones were difficult to dissolve in most organic solvents and could only be crystallized from hot ethanol or chloroform. They gave reddish brown colours with aqueous ferric chloride and effervesced with aqueous sodium bicarbonate. They melted at high temperature with decomposition.

All of the pyridones (II) listed in Table 2 showed a UV absorption maximum in the 304-306 m μ region and so resembled closely the 2-pyridones reported by Specker et al.³ The IR spectra of these compounds were similar to one another and all showed absorption in the region 1630-1651 cm⁻¹ as expected for the 2-carbonyl. Slight variations are attributable to the various substituents at position 1 and 3.

The formation of dihydroxy-pyridines (II) is believed to have occurred in two main stages as depicted below. The first stage involves an attack by a nucleophile (\overline{RO}) on

^{*} cf. Ref. 2.

¹ S. J. Davis and J. A. Elvidge, J. Chem. Soc. 2251 (1953).

² M. A. Butt, J. A. Elvidge and A. B. Foster, J. Chem. Soc. 3069 (1963).

³ H. Specker and H. Gawrasch, Ber. Dtsch. Chem. bes. 75, 1338 (1942).

the pyrone ring at the electron-deficient carbonyl and leads via A to an intermediate (B) which cyclizes to product (C). The second stage comprises a similar attack by a nucleophile (RO) on the carbonyl of the oxodioxin ring and proceeds as shown at (D) with the concomitant expulsion of acetone (F) and so via (E) to the pyridone ester (II). Unluckily, the intermediary product (C) could not be separated in this reaction but in case of phenoxide reaction⁴ (C) was the final product. The latter fact, however, does support the mechanism.

TABLE 1. AMINOPYRANODIOXINS (I)

,		7		21.9
	5.5 5.2 5.2	44 7.	4.4 4.4 1.5	8. 8. 4. 2. 2. 4.
Required C H N	5.5; 6.5; 6.5;	5.0;	3.7;	
	58-2; 5-5; 5-9 58-4; 6-5; 5-2 58-4; 6-5; 5-2 Calculated	63.8; 5.0;	56.0;	49·2; 49·2; 60·6; 67·7;
Analysis	8889	ح		
₹ Z	6.0 4.7	∞ ⊙	4·3; 1	3.8; 2 4.0; 2
Found H	5.6; 6.5; 6.3;		3.6;	3.2; 3.4; 4.7 4.6;
2 2	55.2; 5 58.5; 6 58.3; 6	64.2; 5.1; 5.0	56.0;	49.2; 49.2; 60.9; 67.8;
no (s	<u>' </u>	3	- × ×	4480
UV absorption (95% ethanol)	330 4-19 330 4-65 330 4-15			 -
abs et /	3 8 3			
ular ula	000	9°0°	O O O	9000 0000 0000 0000
Molecular formula	C ₁₃ H ₁₃ NO ₆ C ₁₃ H ₁₇ NO ₆ C ₁₃ H ₁₇ NO ₅	C16H15NO5 C18H15NO5	C16H18NO6CI C16H12NO6CI	C ₁₆ H ₁₂ NO ₆ Br C ₁₆ H ₁₂ NO ₆ Br C ₁₆ H ₁₆ NO ₆ C ₁₆ H ₁₆ NO ₆
nt -i c				
Solvent for crystal- lization	CHCI, CHCI, CHCI,	CHCI, CHCI,	CHCI, CHCI,	CHCI, CHCI, CHCI, CHCI,
Yield (%)	91·2 43·0 68·9	99.5 99.5	94.0	84·5 94·2 65·3 84·6
m.p.	165° 176° 149°	178° 166°	183° 188°	185° 185° 157° 174°
Product (I)	6.4 8 0.5 g 0.6 g	1:3 gg	2.25 g 1.0 g	4.08 g 3.0 g 1.88 g 1.4 g
7-Chloro- 2,2-dimethyl 4,5-dioxo-1- pyrano (4,3-d)-(1,3)- dioxin (1 mol)	6.75 g 1.0 g 1.0 g	108	2·3 g 1·0 g	3.08 g 2.0 g 1.0 g
Quantity ((2 mols) d	2.65 g 1.0 g 1.0 g	1.18 8.8 1.18 8.8	2.54 g 1.11 g	4·5 g 2·9 g 2·14 g 1·25 g
Primary amine	Ethylamine iso-Butylamine n-Butylamine	4.* o-Toluidine 5. p-Toluidine	m-Chloroaniline p-Chloroaniline	m-Bromoaniline p-Bromoaniline p-Anisidine β-Naphthylamine
óŻ	3.2.1	 	6.	% 6 O T

* The structure of the newly prepared aminopyranodioxins follows from their UV absorptions recorded above (cf. Ref.) (From 1-3). The UV absorption characteristic of the compounds (IV-XI) has already been reported.*

TABLE 2. 4,6-DIHYDROXY-1,3-DISUBSTITUTED PYRIDINE (II)

IR absorption	max v(cm ⁻¹) mainly for the C ← O(2) Nujol Mulis	1645 s 1647 s	1645 m	1631 s	1653 s 1631 s	1639 m		1639 m	1650 s	1639 m	1647 s	1639 s
UV absorption	(95% thanol) r log e	4.5	4:3	4· 8·	4.32	4.30		1	4.32	4.68	4.30	4.46
UV abs	(95% cthanol) λ_{max} log	304	306	305	302	303		1	304	306	304	304
										ວ		4.5; 11.5
	z	6.6	8-8	5.5	5.5	5.1	<u>-</u> -	8	3:1	4 %	4.7;	4.5;
	Required H	5.2;	6·2;	6.7;	6.2;			5.2;	4.8;	5.2;	3.4;	
	Ç	50·71; 52·9;	54.8;	\$6.6;	54·8; 56·5;			62·3;	61.1;	62·3;	52·8;	
	Analysis									ū		5-0; 12-0
	z	3.6	6.5	5.9	6.6 5.6	4 .8		5.0	5.5	5.9	4.3;	5.0;
	Found H	5.3;	6.1;	9.9	6·7; 6·7;			5.4;	5.0;	5.4;	3.5;	
	C	50·5; 52·6;	\$6.6;	56.6;	54·6; 56·4;			62.2;	61·1;	62-2;	53.2;	
	m.P.	184° 185°	158°	170°	182° 160°	182°		191°	198°	199°	197°	188°
ייי ייייטאניז שוטוונטטשט בייר ואסאנוזערטייר ב מושעו	Solvent for crystallization	меон Есон	Мсон	EtOH	меон есон	МеОН		ЕтОН	МеОн	ЕтОН	МеОН	Еюн
	Molecular formula	C,H11NO, C10H13NO,	C ₁₁ H ₁₅ NO ₅	C11H16NO6	C ₁₁ H ₁₆ NO ₆ C ₁₂ H ₁₇ NO ₆	C ₁₄ H ₁₈ NO ₆		C ₁₆ H ₁₆ NO ₆	C ₁₄ H ₁₃ NO ₆	C ₁₆ H ₁₆ NO ₆	C ₁₃ H ₁₀ NO ₆ Cl	C1,H13NO,CI
	y-1,3- rridones R'	CH ₃ - CH ₃ ·CH ₂	CH _s —	CH3·CH2—	CH ₃	СН3—		сн₃∙сн₂-	CH3—	CH3·CH2 -	CH ₃ —	CH ₈ ·CH ₈ -
	4,6-Dihydroxy-1,3- disubstituted pyridones R	1	CH ₃ >CH-CH ₂ —	CH ₃ >CH CH ₂ —	CH ₃ (CH ₂) ₃ CH ₃ (CH ₂) ₃		CH,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CH _s	CH ₈ —		
-	ò	- 4	3.	4		7.		∞	6,	10.	=	27

1639 s	1647 m	1639 s	1647 s	1639 s	1639 s	1626 s	1639 s	1658 m	1653 m
4.99	4.50	4.40	4.50	4.30	4.40	4.33	4.50	4.37	4.12
304	305	305	305	305	305	305	304	306	308
12-3	-	ă	4.0; 22.6	4-1; 23-0	22.6				
4.7; 12.3	4.6;	. <u>.</u>			40;	4 8	4.6	4.5	4:3
3.4;	3.9;	2.9;	3.4;	2-9;	3.4;	4.5;	5-0;	4.2;	
52-8;	54.3;	45.9;	47.5;	45.9;	47.5;	57.7;	59·1;	9.59	
12.0	4.3; 10.7	<u> </u>	22.5	3.7; 22.6	21.2	_			
4.9; 12.0	4·3;	4		3.7;	3.6;	4	4 ∞	. 4 ∞	4.4
3.6;	3.7;	3.2;	3:3;	2.7;	2:3;	4.6;	5-0;	4.2;	
52.8;	53.6;	46.4;	47.5;	45.9;	47-1;	57.5;	59.0;	65·3;	
170°	178°	188°	192°	.961	203°	193°	205°	205°	184°
МеОН	Етон	МеОН	Еюн	МеОН	Еюн	МеОН	Етон	МеОН	ЕтОН
C ₁₈ H ₁₀ NO ₆ CI	C14H13NO6CI	C ₁₈ H ₁₀ NO ₆ Br	C ₁₄ H ₁₂ NO ₆ Br	C ₁₈ H ₁₀ NO ₆ Br	C ₁₈ H ₁₄ NO ₆ Br	C ₁₄ H ₁₈ NO ₆	C18H16NO6	C ₁₇ H ₁₈ NO ₆	C ₁₈ H ₁₆ NO ₆
CH\$ -	сн, сн	CH _s —	CH3.CH2	CH ₂ -	H ₃ ·CH ₂ —	CH _s —	CH₃·CH₂—	CH _s —	CH ₃ ·CH ₂ — C ₁₈ H ₁₈ NO ₆
		, a	Br.	B	Br—	CH,0—	CH,0		
13.	4.	15.	16.	17.	18.	.61	20.	21.	22.

TABLE 3. MORPHOLINIUM SA	LTS	(HI)
--------------------------	-----	------

	Pyri	done (II)	Quantity in			
No.	R	R′	chloroform	Morpholine	Yield	m.p.
1.	СН₃—	CH ₃ —	0·2 g/25 ml	0·2 ml	0·2 g	180°
2.	CH ₃	CH₃•CH₃a	0·2 g/25 ml	0-2 ml	0·2 g	142°
3.	CH ₄ —		0·4 g/25 ml	0·5 ml	0·42 g	176°
4.	СН₃—	CH _a	0∙2 g/40 ml	0-5 ml	0·15 g	183°
5.	СН₃—		0·5 g/25 ml	0·6 ml	0-5 g	178°

Analysis

	Molecular	Found	Required		
No.	formula	C H N	C H N		
1.	C ₁₈ H ₂₂ N ₂ O ₆	59.9; 6.3; 8.0	59.7; 6.1; 7.7		
2.	$C_{13}H_{10}N_{3}O_{6}$	51.9; 6.9; 9.5	52.0; 6.7; 9.3		
3.	$C_{18}H_{12}N_{1}O_{6}$	59.6; 6.2; 7.9	59.7; 6.1; 7.7		
4.	C ₁₇ H ₁₉ N ₂ O ₆ Cl	53-2; 5-0	53.3; 4.9		
5.	$C_{21}H_{22}N_{2}O_{6}$	63.8; 5.7; 6.8	63.3; 5.5; 7.0		

EXPERIMENTAL

7-Anilino-2,2-dimethyl-4,5-dioxopyrano(4,3-d)-(1,3)-dioxin* (I, R = Ph) was crystallized from chloroform when it had m.p. 193° with dec. (Found: N, 4·8. Calc. for C₁₅H₁₂NO₅: N, 4·9%.) Other 7-Amino-2,2-dimethyl-4,5-dioxopyrano(4,3-d)-(1,3)-dioxins, prepared similarly, are listed in the Table No. 1.

Formation of methyl 1,2-dihydro-4,6-dihydroxy-2-oxo-1-phenylpyridine-3-carboxylate (II $R=CH_{\bullet}$, R'=Ph). The pyronodioxin (I, R=Ph; 1·0 g) was added to MeOH containing MeONa (from 1 g Na;) and the mixture was refluxed for 1 hr. The soln. on cooling, was acidified with 2N HCl. A white solid separated, and was dried. Methyl 1,2-dihydro-4,6-dihydro-2-oxo-1-phenylpyridine-3-carboxylate (0.33 g; 36·3%) was recrystallized from CHCl₂-MeOH, it had m.p. 210° l unchanged in admixture with an authentic sample of the material³ (Found: $N=5\cdot5$; Calc. for $C_{12}H_{11}NO_{4}$: $N, 5\cdot3\%$.) Other pyridones prepared in this way are recorded in Table 2.

Morpholinum salts of the dihydroxypyridones (II)

Reaction of morpholine with methyl 1,2-dihydro-4,6-dihydroxy-2-oxo-1-phenyl pyridine-3-carboxylate. The pyridone (II, $R = CH_3$, R' = Ph; 1.0 g) in CHCl₂ (20 ml) and morpholine (0.5 g) were refluxed

* Details. (cf. Ref. I)

together for 15 min. The morpholinium salt (III, $R = CH_3$, R' = Ph) separated and was crystallized from MeOH. It melted at 180° with dec. (Found: C, 58·6; H, 5·9; N, 8·1; Calc. for $C_{17}H_{30}N_2O_6$: C, 58·6; H, 5·7; N, 8·0%.) Other morpholinium slats prepared as above are listed in Table 3. The elementary analysis were carried out by A. Bernhardt, Microanalytisches Laboratorium, Mulheim (Ruhr), West Germany.

Acknowledgement—Thanks are due to Dr. Salimuzzaman Siddiqui, F.R.S., Chairman for his interest in this work. One of us (I. A. Akhtar) thanks P.C.S.I.R. for the award of research assistantship.